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After a general discussion of diffusion in a potential field having two 
minima, an explicit solution is obtained for a special form of the potential. 
The potential is symmetric, but the diffusing particle is initially at an arbi- 
trary point near the potential maximum. Various suggested approximation 
schemes are tested, with the following conclusions. (i) In linear approxi- 
mation around the maximum the probability distribution is Gaussian. A 
two-peaked distribution emerges only through nonlinear terms. (ii) The 
chances for the particle to go to the right or the left valley cannot be found 
from the linear approximation. Matching the linear approximation with a 
macroscopic description far away from the maximum is therefore wrong. 
(iii) Kramers' treatment of the escape across a potential barrier yields a 
practically exact result for this model. 
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1. I N T R O D U C T I O N  

Experience has taught  us that  the behavior  o f  most  many-body  systems can 
be described by macroscopic  laws. These laws are not  exact:  Their validity 
is limited by the existence o f  fluctuations. As a rule, the fluctuations are 
small and their influence on the behavior  tends to zero when the size o f  the 
system goes to infinity. This is the basis o f  the usual approximat ion methods (1-6~ 
and has been called "p ropaga t ion  o f  the extensive proper ty  o f  macro-  
variables." (3) However,  there are exceptions to this rule. When  the system is 
in an unstable situation its macroscopic  future will be determined by the 
initial fluctuations. Hence the distinction between macroscopic  behavior  and 
small fluctuations is no  longer possible. This paper  investigates such a 
situation on the basis o f  a simple model. 
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f t 
Fig. 1. The macroscopic behavior of the velocity of a 

Brownian particle. 

To specify the problem more fully, it is useful to distinguish three 
situations. 

(i) The macroscopic equations have one stationary solution and all 
other solutions converge to it. Thus, all solutions are asymptotically stable 
(Fig. 1). The effect of  any random fluctuation occurring at an arbitrary time 
will ultimately die out. The fluctuations will not build up, but remain small 
at all times. In particular, in the stationary state the effect of  the fluctuations is 
balanced by the macroscopic tendency to return to the stationary value. 
Equilibrium fluctuations are the outcome of such a balance; the resulting 
relation is the fluctuation-dissipation theorem. The classic example of this 
situation is the velocity V of a Brownian particle (in this connection often 
called Rayleigh particle), which obeys the macroscopic equation 1;" = -~,V. 

(ii) The solutions of the macroscopic equations are stable but not 
asymptotically stable, i.e., two neighboring solutions remain near to each 
other but do not converge (Fig. 2). The position X of a Brownian particle is 
an example, the macroscopic equation being X = 0. Another example is 
provided by systems with a limit cycle: The phase of the periodic solution 
is not asymptotically stable. ~7'8~ The fluctuations are not damped by the 
macroscopic motion, nor magnified, but by accumulation in the course of 
time their effect grows proportionally with ~/t-. When the system starts out 
in a definite state the distinction between macroscopic motion and fluctua- 
tions is meaningful only for a limited period. Although this period is longer 
for larger systems, it is impossible to compute the long-time behavior by any 
approximation method based on the smallness of fluctuations. 

(iii) The macroscopic equations have a stationary solution that is 
unstable: From any neighborhood around it different solution curves emerge, 
which end up by being far apart (Fig. 3). When the system is in that unstable 

Fig. 2. The position of a Brownian particle macroscopically. 
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Fig. 3. The stationary solution x = 0 is unstable. 

stationary state at t = 0 the initial fluctuations will determine whether it will 
evolve along one or the other macroscopic trajectory. Regardless of  how 
large one chooses the system, in the course of time the effect of  the early 
fluctuations magnifies into macroscopic size. An example of  this situation 
will be treated in the present paper. 

The importance of this problem for many questions in physics, chemistry, 
and biology has become clear in recent years and has given rise to a vast 
literature. No approximation scheme based on a separation of macroscopic 
behavior and small fluctuations will be able to handle this process of  magni- 
fying fluctuations. Kramers (9~ studied the motion of a particle in a potential 
field, subjected to viscous damping and to a fluctuating force. Starting from 
an equation for the probability distribution of  both position and momentum, 
he derived for the case of  strong damping a diffusion equation for the position 
alone. This equation for the overdamped case will be our starting point. His 
further results, however, are of  no avail to us, because he was interested in 
the escape over a potential barrier rather than in the approach to equilibrium 
in a bistable potential. Other treatments of the escape problem were given by 
Montroll and Shuler ~1~ and Griffiths e t  al.  ~1~ 

More recently the problem of  fluctuations near an unstable equilibrium 
has received much attention, since it was realized that it occurs in a large 
variety of  phenomena of the type of phase transitions. (12~ Of the abundant 
literature we can only quote a selection. One such phenomenon is the decay 
of metastable states C~3~ or spinodal decomposition (see Ref. 14 for a survey). 
This case, however, is complicated by the fact that one is dealing with a 
continuous system and therefore an infinity of  variables rather than our single 
one. The theory has therefore so far been restricted mainly to studying what 
is here called the macroscopic equation, ~15~ even when it starts with a master 
equation formulation, ~6~ but some attention has been given to fluctuations 
as well. (17,~a~ 

More directly related to our problem are tunnel diodes and other 
switching devices. ~1~ Much work has been done with respect to the laser, 
which above pumping threshold may operate in either one of two (or more) 
stable modes, c2o.5~ Chemical reactions in open systems may also have two 
stable stationary regimes separated by an unstable stationary solution. ~2~ 
Other instabilities can be found in the attitudes of  interacting social groups. (22~ 
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The equations for bistable systems have also been studied from a general 
point of view. (23'2~) 

It must be said, however, that the Fokker-Planck or diffusion approxi- 
mation, which is very popular in these fields, is subject to serious objections. 
The reason is that in many-body systems the only way to make the individual 
jumps small is by increasing the size of the system, which, however, at the 
same time reduces the influence of nonlinearity on the fluctuations31'8) In 
particular, near a point of instability the master equation cannot be replaced 
with a Fokker-Planck equation, because the finite size of the individual jumps 
is decisive. For this reason we shall here resort to a model in which the 
instability is due to an external mechanical force. 

2. D I F F U S I O N  IN A BISTABLE POTENTIAL  

As a stochastic description of a bistable system we shall use the one- 
variable Fokker-Planck equation 

~P(x, t) O U'(x)P + - 32p Ot = ~---~ t~ ~ (1) 

where U'(x) is the derivative of a potential function U with two minima as 
sketched in Fig. 4. As a physical model one may take the unstable pendulum 
of Fig. 5, immersed in a viscous medium whose temperature is given by ~. 
Our reason for choosing (1) is merely that it seems to be the mathematically 
simplest example of bistability, and can be solved for a suitable choice of U. 

The range o f x  may be either ( -0% oo), or x may be bounded at one or at 
both ends. The probability flow is 

J(x, t) = - ( U ' P  + #P') (2) 

As boundary condition we require J to vanish at the boundaries, which 
means that the system has no other states outside the range of x. One then 
has for any solution of (1) the identity 

ddt 2 ~- f ev/~P(x' 02 dx = - f  eV/~(U'P + ~p,)2 dx (3) 

~ • 

X 2 X 0 X I X Fig. 4. A bistable potential. 
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Fig. 5. A physical realization of Eq. (1). 
( tl 

This implies that at a boundary at infinity, or at a boundary where U is 
infinite, the boundary condition is taken to be 

eVWp J = v~ P d eVWp ~ 0 (4) 

It follows from (3) that all solutions of (1) obeying the boundary con- 
ditions will ultimately satisfy the equation U'P + #P'  = 0. The only solu- 
tion of this equation with the boundary conditions is the stationary solution 

Po(X) = e-  v~x~ (5) 

It also follows that for given initial P(x,  0) only a single solution of ( l )  exists. 
Of course it suffices to take 

P(x,  O) = 3(x - y )  (6) 

with arbitrary y in the range. The solutions of (1) with this initial value will 
be denoted by P(x,  t ly). 

In the limit v ~ -+ 0, Eq. (1) reduces to the first-order equation 

OP 0 V ' ( x )P  = 0 (7) 
Ot ~x 

The characteristics are determined by the first-order differential equation 

= - V ' ( x )  (8) 

This is the macroscopic equation corresponding to the Fokker-Planck 
equation (1). Notice that the velocity is proportional to the force because (1) 
describes the overdamped case. U is the potential of the mechanical force, 
divided by the friction constant, and may be called "viscous potential." Let 
the solution of (8) with initial value y be 

x = ~ (y ,  t) ,  y = ~(x ,  t )  (9) 

Then the solution of (7) is 

e (x ,  t) = e( r  t), 0) ar t)  
Ox 
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In  particular for the initial condition (6) 

e(x, tly) = 3{x - rp(y, t)} (10) 

However, the limit u a -+ 0 does not commute with the limit t--~ oo. In 
anyfinite time interval 0 < t < T i t  is true that the solution of (1) with initial 
condition (6) tends to (9). More precisely, for any smooth test function f(x) 
one has for fixed t 

f f(x)P(x, t[y) dx = f f(x) 3{x - ~0(y, t)} dx = f{rp(y, t)} lim 
-&-*O d d 

But it is not true that the asymptotic behavior o fP(x ,  t lY) for t -+ oo can be 
found from (10), not even when ~ is very small. This will now be demonstrated. 

The behavior of  the solutions (9) can be gleaned f rom Fig. 6. W h e n y  > xo 
the motion is in the direction of x l ,  and x will end up by crawling toward xl 
according to 

x - xl = const x e x p [ - U " ( x l ) t ]  (11) 

Thus we have found for y > Xo 

lim l imP(x ,  tly) = 3(x - xl) (12) 
t-~oo ~0 

Similarly, when y < xo one sees that x approaches x2 and 

lim l imP(x ,  t l y )=  8 ( x -  x2) (13) 
t ~ o o  0 ~ 0  

On the other hand, if one first takes the limit t ~ 0 one knows that 
P(x, t]y) tends to (5). The subsequent limit t~-+ 0 can be taken again by 
means of a test function. For  small v~ one finds 

f f(x)Po(x) dx = atf(xl) + a2f(x2) 

where al + a2 = 1 and 

al/a2 = e x p ( -  [U(x~) - U(x2)]/#} 

Hence, when U(x~) < U(x2) as in Fig. 4, one has 

lim lira P(x, t l Y) = 3(x - xt) 
0~0 t--, oo 

regardless of  the initial y. Thus, 

(14) 

as long as the fluctuations are not yet 

U'(x) 

Fig. 6. The behavior of the macroscopic solu- 
tions in the bistable viscous potential of Fig. 4. 
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entirely neglected, the system will end up in its lowest energy state. More- 
over, when U(xl) = U(x2) one obtains 

lim lim P(x, t ly) = �89 - xl) + �89 - x=) 
~ 0  t -~oo 

(15) 

Physically the former limiting process means that one ignores fluctua- 
tions and describes the evolution of the system macroscopically. The distri- 
bution is a delta function at all times and tends to either (12) or (13) for t --+ ~ .  
The latter limiting process, however, means that one allows the system to 
reach its ultimate state in the presence of fluctuations, and subsequently 
studies systems with smaller and smaller temperatures 8. The existence of 
fluctuations allows the system to probe the entire space of states x and search 
for the lowest potential minimum. When the fluctuations are small this may 
take a very long time, but that does not show up in the result, because the 
limit t ~ co is taken first. In the case U(xl) < U(x2) the subsequent lowering 
of t~ always reaches a stage where v ~ << U(x~) - U(xl), so that the minimum 
at x2 is depleted during the evolution of the system and the result (14) 
emerges. In the case U(x~)= U(x2) the two minima are always equally 
probable, no matter how small 8, and the result is (15). 

The physicist, however, is dealing with time periods that may be long 
but are never infinite, and with a ~ that is usually small, but never zero. The 
question is therefore: Which of the two mathematical limiting procedures is 
appropriate to describe the actual system and may serve as a starting point 
for successive approximations ? The obvious answer is that in almost all cases 
occurring in practice the macroscopic description is very good. Both situa- 
tions (i) and (ii) in Section 1 can be handled by taking the macroscopic 
description as lowest approximation, and subsequently adding corrections for 
the fact that u ~ is not quite zero. 

The macroscopic approach is even to a certain extent applicable to our 
diffusion in a bistable potential, because in macroscopic systems the prob- 
ability to fluctuate from one potential valley into the other across the barrier 
is extremely small; the time required may easily exceed the age of the universe. 
All memory devices rely on this fact. ~9~ However, the situation is different 
if the initial value y is taken at the maximum Xo. Then the macroscopic 
equation (8) simply yields x(t)  = Xo for all t >/0, while in reality it is the 
fluctuations that determine how the system is going to evolve and whether 
it will end up near xl or near x2. Clearly the macroscopic description is no 
longer a suitable first approximation. Similarly, when y is close to Xo the 
macroscopic value moves away very slowly, and in the meantime the 
fluctuations may carry the system across the maximum so as to render 
the macroscopic solution spurious. The problem of finding P(x, t ly) start- 
ing from a value of y close to xo is the subject of this paper. 
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3. L INEARIZATION A R O U N D  THE U N S T A B L E  STATE 

Any approximation method that starts from the macroscopic equation 
and subsequently adds fluctuations as small corrections breaks down when 
y is close to Xo. For, the initial fluctuations magnify into macroscopic con- 
sequences. As a remedy several authors have suggested the following alterna- 
tive approximation scheme. 

(a) For the region near Xo replace U' in (1) by its linear term and solve 
the resulting equation exactly. 

(b) Use the result for P(x,  t [ y)  up till a time ts, after which fluctuations 
across the maximum are negligible. Thus this linearized solution already 
determines the probabilities for ending up in xl and x2, respectively. 

(c) To find P(x,  t ly ) for t > ts, take the P(x,  t~[ y) found above as initial 
distribution and match it with the macroscopic approximation method for 
the subsequent evolution. 

The crucial question is whether a t~ can be found sufficiently small for 
the errors made in (a) by linearizing to be harmless, and sufficiently large 
for the approximations made in (b) and (c) to be valid. One test, of course, 
is that the result must be insensitive to the precise choice of t~, but the actual 
verification requires an estimate of the errors made. For the Malthus- 
Verhulst problem of population growth r I have found that, if the errors 
are measured in terms of the size of the system, no consistent choice of t~ is 
possible. The failure is due to the fact that the error made in (a) is magnified 
by (c) owing to the diverging of the macroscopic paths. The present soluble 
model will allow us to verify this conclusion explicitly. 

We start by computing the solution of (1) with linearized U'. Take xo = 0 
and set 

U(x) ,~ U(O) - tgK2x 2 (16) 

The coefficient of x 2 has been called ~ K  = to facilitate comparison with the 
calculation in Section 4. Now (1) reduces to the linear Fokker-Planck 
equation 

0P _2v~K2 a 02p (17) 
0-7 = ~ x P  + ,~ b-~x ~ 

The solution is of course a Gaussian: 

K [ K2(x - ye') 2] 
P(x, t lY) = [~r(e2 , -- 1)11/2 exp_-  ~ -- ~ ] (18) 

where we have set 2tgK2t = r for typographical reasoris. The center moves 
away exponentially according to 

x = y exp ~- = y exp(2tgK2t) (19) 
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which is the solution of the linearized macroscopic equation associated with 
(17). The width, however, grows at the same rate. When y = 0 the center 
remains at x = 0, and only the width grows as exp(2v~K2t). 

A first conclusion is that it is not true that P develops two separate peaks. 
The intuitively appealing idea that one probability maximum emerges on 
each side of the potential maximum is not correct in the linear approximation. 
Two peaks can only originate by the nonlinearity of U(x), as may be under- 
stood as follows. When the rapidly expanding wings of the Gaussian (18) 
reach the values of x where U(x) begins to curve upward, they are slowed 
down and later even reflected by the rising potential wall. Thus on each side 
the probability is trapped between that wall and the central barrier and settles 
down as a peak around the minimum of U. We conclude that the representa- 
tion of the P as a sum of two Gaussians (la,24~ is unfit for describing the 
neighborhood of the unstable point. 

A second conclusion is that nonetheless the exchange of probability 
across the maximum at x = 0 decreases rapidly. One has from (18) for 
2~K2t >> 1 

P(O, t lY ) ~- ~ exp(-2~K2t)exp(-K2y 2) (20) 

which decreases exponentially with time. More relevant is the probability 
flow 

~_~ay exp( -  J(O, t) ~_ 4~K2t) exp( -  K2y 2) (21) 

but it leads to the same conclusion: for 2&K2t >> 1 no probability is exchanged 
any more across the potential barrier. 

Consequently, the probabilities p + and p_ to be to the right or the left of 
the potential maximum must tend to constant values. In fact, one has 

f )  1 1 ~F Kye ~ ] p+(t) = P(x, t[y) dx = ~ + ~ er~[(e~; ~ i)l,2j 

Thus 

p~(oo) = �89 + �89 erf[Ky] (22) 

When y is small, [Ky[ << 1, this reduces to 

1 Ky (23) p~(oo) = ~ + ~-~ 

The explicit solution in Section 5 will show that this result is incorrect. 
This condemns step (b) in the above proposed scheme. / t  is therefore not 
possible to approximate the solution of a nonlinear diffusion problem by matching 
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at some intermediate t8 the solution of  the linearized problem around the insta- 
bility with a macroscopic approximation for the behavior far  from the energy 
maximum. 

4. T H E  E I G E N F U N C T I O N  M E T H O D  

Another approach to solving Eq. (1) consists in splitting off a time 
factor e -at and studying the eigenvalue equation 

3P" + U'P'  + (U" + h)P = 0 (24) 

with the boundary conditions (4). We know from (3) that there is one eigen- 
value h = 0 with eigenfunction Po given by (5), and that all other ~ are 
positive. 

For  a further discussion it is convenient to remove the second term, so 
as to give the equation the form of a time-independent Schr6dinger equation 
for a nonrelativistic particle in a one-dimensional potential field. Set 

so that 9 obeys 

P(x) = e-U(x)/z'~9(x ) (25) 

,, [ v,2 v,,  
+ L - 4 - ~ + ~ + g  m--0 

This has the form of a $chr6dinger equation 

9" + [E - v(x)]9 = 0 (26) 

in which the potential V is related to U by 

V = U'2/4~ 2 - U"/Zt~ + C (27) 

with arbitrary constant C. To solve this Riccatti equation for U', set 

U' = - 2~Z'/Z, Z = e-  vl2~ (28) 

Equation (27) then reduces to 

z "  + ( c - v ) z  = o 

which is the same as (26). As (28) makes no sense unless Z > 0, the only 
permissible solution for Z is the ground state 90, so that one must take C = E0. 
The outcome of  this algebra is therefore the following. (26) 

Take an arbitrary Schr6dinger equation (26). Use its ground state 9o to 
define a viscous potential U through (28), that is, 

U = -- 20 ~ log 90 (29) 
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iV(x) 

Oa b x 
Fig. 7. The rectangular potential chosen as V(x). "- c ~ 

The corresponding eigenvalue problem (1) has the eigenfunctions P , ,  which 
are related to the eigenfunctions ~0 n of  (26) by (25), i.e., 

P n ( X )  = 9o(X)9n(x) ,  n = O, I,  2 .... 

while the eigenvalues are 

an = ~(En - Eo) 

The general solution of  (1) is 

P ( x ,  t )  = eogo(X) 2 + 9o(X) ~ c n g n ( x ) e x p [ - v ~ ( E n  - E0)t] 
n = l  

We shall take the 9n normalized in the familiar quantum mechanical norm; 
then the normalization of  P as a probability density is achieved by choosing 
c0 = 1. The other cn are found from the initial distribution P ( x ,  O) in the 
usual way. In particular 

9n(Y) 
P ( x ,  t [ y )  = 9o(x) a + 9o(X) ~ o ~  9n(x) exp[-o~(En - E0)t] (30) 

n = l  

As we are interested in a bistable U, the potential V must be chosen in 
such a way that 90 has two maxima with one minimum in between. One 
easily convinces oneself that therefore V has to have a maximum enclosed 
by two minima, i.e., the same general shape as U. A suitable choice is the 
rectangular V in Fig. 7, because the corresponding equation (26) can be 
solved rather explicitly. The infinite potential wall at x = b has the effect 
that 9n "~ b - x, and therefore e U/~ ,~ (b - x )  -2  and P~ ~ (b - x) 2, so that 
the P ,  obey the boundary condition (4). Although V is discontinuous, U is 
differentiable and only its second derivative jumps at x = + a (see Fig. 8). 

The fact that we have chosen V symmetric somewhat restricts the gener- 
ality but greatly simplifies the calculation and the discussion. The eigen- 

Fig. 8. Sketch of U(x) corresponding to Fig. 7. 
I•/U(x) Oa b x 
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functions are alternatively symmetric (n = 0, 2, 4,...) and antisymmetric 
(n odd). They can be found by solving the Schr6dinger equation for 0 < 
x < b with boundary value 9'(0) = 0 and ~0(0)= 0, respectively. The prob- 
abilities p + and p_ to be in the right or the left half are given by 

p ~ ( t )  = ~ + ~ {P(x, t l y  ) - P ( - x ,  t l y ) } d x  

= _+ expL- t, 2.+l - Eo ) t ]   o(x 2m+ (x)dx (31)  
r n = 0  

The solution of  (26) is an exercise in elementary quantum mechanics. ~27) 
We suppose Ka >> 1, which has the effect that the barrier in U is also high. 
The following features are easily checked. We set k = V'E and r = 
(K 2 - k2)1/2. 

(i) The lowest eigenvalue is 

= c + r (32)  

The corresponding normalized eigenfunction is symmetric and 

1 
~Oo = ~ c  sin[ko(b - x)], a < x < b (33) 

2~r 1 
- - - -  e - ra  cosh g x ,  lxl < a (34) 

rP~ = Kc ~/  c 

Hence, omitting an irrelevant constant term, 

U = -2u~logsin[ko(b - x)], a < Ix[ < b (35) 

U = - 2 ~ l o g c o s h 2 K  + 2,~Ka + 2t~log(Kc/2~r), Ix[ < a (36) 

Near its maximum at x = 0 the potential is given by (16). 

(ii) The next eigenvalue corresponds to an antisymmetric eigenfunction 
and differs from (32) by a very small amount 

4re e_ 2,c~ k~ - ko = ~-~ + O(e -'K~) (37) 

The normalized eigenfunction is 

~l(x) = ~ 7  sin[k~(b - x)], a < x < b (38)  

1 2rr e_~: ~ 
~l(x)  = V'7 Kc sinh g x ,  Ixl < a (39) 

For  x > a, it is practically equal to ~o; for x < - a ,  to - ~ o .  
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(iii) All eigenfunctions 92m with even index are symmetric, all 92m + 1 are 
antisymmetric. As long as the eigenvalues are small compared to K they 
come in saccessive, almost degenerate pairs 

k2m ~ m+r/c (40) 

4~m - 2+ra 

k2,~+1 - k2m ,~ -K~-cm e (41) 

The corresponding distance of the "energy levels" is 

8rr2m -~+r~ (42) E2m+l - E2m Z ~ e 

Again for x > a each ~%m+1 is practically equal to ~2r~, while for Ix[ < a it is 
practically zero. Hence 

f; , ~2m+ l (X)~2ra ' (X)  "~ -2~mm ' , k2m, k2m, << K (43) 

It follows that (31) may be written approximately 

1 1 
~~ exp[-tg(E~ - Eo)t] p (t) = +_ 

+ ~> 9mm+I(Y)._.__...___~( f [  - E2 K2 +Po,Y-- exp[-~9(E2m+l - Emm)t] ~o(X)~2m+ I(x) dx (44) 

(iv) The eigenvalues far above K 2 are roughly equidistant; i.e., for 
mr >> Kb 

k~ -~ (n + 1)rr/2b, ~+(x) ~- (2[b) ~]2 sin[k~(b - x)] 

It will be clear that the general features of this picture are insensitive to the 
precise shape of the potential, and that the special choice of  our model 
merely served to make the picture more concrete by supplying some actual 
figures. 

5. THE E V O L U T I O N  OF THE P R O B A B I L I T Y  D I S T R I B U T I O N  

We are now in a position to describe the successive stages in the de- 
velopment of P(x, t]y), as given by (30). 

STAGE I" ~gK2t << 1 (45) 

At t = 0 the distribution is a delta function, and all terms up to n = oo are 
important in the sum (30). As t increases, the higher terms are damped out, 
resulting in a flattening of  the peak. As long as (45) holds, however, the terms 
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on the second line of (44) still contribute, so that p + and p_ vary with time: 
there is an exchange of probability between the regions x > 0 and x < 0. 
This stage ends in an interregnum where t~2Kt ~ 1, during which no general 
qualitative statements can be made. 

STAGE II: 1 << t~K2t << (Kc) 2 (46) 

The terms on the second line of (44) have been damped out. On the other 
hand, the exponential on the first line is practically unity due to (41). The 
separation of the distribution into two separate parts is completed and the 
share of each is given by 

1 1 ~I(Y) (47) 
P~ = 2 -+ 2~oo(y) 

The detailed distribution (30) itself, however, still varies: Inside both separate 
potential valleys the diffusion toward equilibrium is still in progress. 

STAGE III" 1 << tgt/c 2 << Kce 2K" (48) 

All eigenfunctions are damped out except ~o0 and ~o1: 

q~(Y) (--~t-k--# e-2K~) (49) P(x, t[ y) = ~Oo(X) 2 + ~ Cpo(X)9l(x) exp 8zr2 

The distribution has reached equilibrium in each separate valley, but exchange 
between both valleys is extremely slow. 

The share of each valley is given by (47). Inserting the actual values, one 
finds 

1 1 sinh Ky = (1 + e~2K~) -~ (50) 
P~ = 2  + 2coshKy  

This demonstrates that the result (22) obtained by linearizing around the 
maximum of U is erroneous. In particular, for [Kyl << 1, 

p .  =�89  + �89 

in contrast with (23). The reason for this discrepancy is that for (22) to hold, 
one must have ~K2ts >> 1. By that time, however, the values of x represented 
in (18) are so large that Kx >> 1, and therefore the linear approximation (16) 
of (36) is no longer valid. Thus there is a gap between the time interval during 
which U can be linearized and the time when P decomposes into two independent 
peaks. 

STAGE IV: St ,~ Kc~ 2K~ (51) 

On this time scale the last term in (49) is disappearing through diffusion over 
the potential barrier. The final distribution is (5), which attributes equal 
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probabilities to both valleys. The rate at which this happens is given by (49). 
The relaxation time r~ is 

1 - 8~r2 e -~K~ (52) 

6. E S C A P E  O V E R  T H E  B A R R I E R  

The result can be utilized to study the escape over a potential barrier of  
the form (36). According to (44), (37), and (52), one has during Stage IV 

p ~ ( t )  = �89 + �89 -t/~, 

where the constant C is all that is left of the initial distribution. Hence p+ 
and p_ obey the simple linear rate equations 

d p §  p + - p _  dp_ P+ - P -  (53) 
dt 2rr ' dt = 2rr 

The probability per unit time for the particle to cross the boundary is there- 
fore 1/2rr, given by (52) or, using (36), 

1 u~ �9 e -  v(o)l~. K c  ( 5 4 )  

The first factor may be understood as roughly the rate at which probability 
inside the valley diffuses toward the foot of the barrier. The exponential is 
the probability to reach the top of  the barrier. The last factor originates from 
the matching of  the wave functions at x = a and must therefore be inter- 
preted as a coupling effect between the valley and the barrier. This inter- 
pretation is only possible when in the exact value 1/2r r = �89 - Eo) the 
energy difference is replaced with its approximate expression for large K. 
However, that is a purely algebraic approximation, not based on physical 
intuition. The result (53) may therefore be utilized to test more intuitive 
approximation methods. 

Kramers ~9~ used (2) in the form ( + d are the positions of the minima of 
U) 

f ]  J(x, t)e = - dx 
d 

During Stage IV the variation of P is very slow, so that J is practically inde- 
pendent of x. The remaining integral can be approximated using (16): 

exp[U(x)/~] dx  ~ exp[U(O)/u a e x p ( - K 2 x  2) dx  
- d  ~ 

= (K-g/K) exp[U(O)/u ~] (55) 
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On the right-hand side the value of P at + d is related to p ~ by using the 
Gaussian approximation 

P ( x  ~ d, t)  = p+(t)[2rrt~/U"(d)] -~/2 exp[-U"(d)(x - d)2/2&] 

Then there follows with the aid of (35) and (32) 

P(d, t )  = p+(t)[2zr~/V"(d)]-  it2 = (~r/c2)ll2p +(t) (56) 

Hence the probability flow across the barrier is found to be 

j = ~ K e- v(o~/~ V'Tr- 
X/Tr c (p- - p+) (57) 

Comparison with (53) shows that the constant factor in (57) represents 
1/2r r. Comparison with (54) shows that Kramers '  calculation leads to the 

correct value. This is somewhat surprising, because both (55) and (56) differ 
from the exact value by a factor �89 but both factors cancel in the final 
result. That may well be a freak of our special U. 

The method of Griffiths et al. (n) may be paraphrased as follows. Sub- 
stitute P = e-  V/~Q in (1), so that 

@Q -- U'(x) @Q @2Q 
e'-i- = " ~  + ~ ex ~ 

Replace U by its linearization (16) and suppose again that Q is practically 
stationary, 

2 K S x Q  ' + ~Q" = 0 

The general solution is 

Q(x) = A + B erf(Kx) 

To determine the integration constants, one observes that 

f; 1) § = {A + B er f (Kx)}e -  vte dx  

e -  trl~ dx  

z (A + a)[2~ /U"(d)]  lt2 = ( a  + ~)c /q '#  

and similarly for p _  w i t h  - B instead of B. Hence 

A = ~712c ,  B = (V"~/2c)(p+ - p _ )  

Now the probability flow evaluated at x = 0 is 

J = [_-~xJx=o = -- '~e-rJ(~ K 

On substituting (59), one obtains again (57) and hence the correct result. 

(58) 

(59) 
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